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Scaling Behavior of Surface Irregularity 
in the Molecular Domain: From Adsorption Studies 
to Fractal Catalysts 

Peter Pfeifer, 1 David Avnir,: and Dina Farin ~ 

For an unexpected variety of solids, the surface topography from a few up to as 
many as a thousand angstroms is very well described by fractal dimension, D. 
This follows from measurements of the number of molecules in surface 
monolayers, as function of adsorbate or adsorbent particle size. As an 
illustration, we present a first case, amorphous silica gel, where D has been 
measured independently by each of the two methods. (The agreement, 
3.02 + 0.06 and 3.04 :k 0.05, is excellent, and the result is modeled by a 
"heavy" generalized Menger sponge.) The examples as a whole divide into 
amorphous and crystalline materials, but presumably all of them are to be 
modeled as random fractal surfaces. The observed D values exhaust the whole 
range between 2 and 3, suggesting that there are a number of different 
mechanisms by which such statistically self-similar surfaces form. We show that 
fractal surface dimension entails interfacial power laws much beyond what is 
the source of these D values. Examples are reactive scattering events when 
neutrons of variable flux pass the surface (this is of interest for locating fractal 
substrates that may support adlayer phase transitions); the rate of diffusion- 
controlled chemical reactions at fractal surfaces; and the fractal implementation 
of the traditional idea that the active sites of a catalyst are edge and apex sites 
on the surface. 

KEY WORDS: Solid surfaces; fractal structures; adsorption; neutron 
scattering; interfaciai diffusion; catalysis. 

1. EXPERIMENTAL ACCESSIBIL ITY OF MOLECULAR FRACTALS 

This  p a p e r  r epor t s  on a d v a n c e s  in r ecen t  inves t iga t ions  (1-7) o f  f rac ta l  

p rope r t i e s  o f  sol id sur faces  at the  m o l e c u l a r  range ,  pa r t i cu la r s  be ing  the  
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corroboration of the analytical method and some exemplary applications. To 
set the stage, we first clarify how the subject relates to other instances of 
fractal structures (of which a host indeed has accumulated in the past few 
years). 

It seems fair to say that macroscopic nature is a rich source of direct 
experimental evidence of fractal objects, but has furnished clues as to the 
underlying mechanisms only in few cases so far--while in the microscopic 
(molecular) regime, most fractral structures known to date have entered the 
picture through theoretical work, and tend to be observable only by 
comparably indirect methods. Indeed: The experimental paradigms for 
fractals are landscapes ta) and the like, (9) turbulence (8'1~ (also clouds (11~ and 
sea surface~ electric discharges, "3) biological structures ranging from 
cauliflower to tissues, ~14) rings of Saturn, t15) and mass distribution in the 
universe, ca) While the prominent examples from theory are critical fluc- 
tuations in phase transitions, ta6) infinite clusters in percolation, "7) self- 
avoiding random walks "s) and other polymer models, t19) diffusion-limited 
aggregation and relatives, ~2~ commensurate-incommensurate phase tran- 
sitions (for a review see Ref. 21), wave functions and density of states in 
quasiperiodic potentials, ~2z) chaotic attractors and all that (for an overview 
see Ref. 23). One reason why many of these self-similar structures in the 
molecular domain are not amenable to straightforward observation, is that 
they typically refer to dynamical aspects and hence cannot be studied by 
inspection similar to the inspection of a macroscopic fractal (in the strange- 
attractor case, the fractal even lives in a space different from configuration 
space). And if they do refer to a "frozen" situation such as in percolation, 
their geometric scaling properties are characteristically inferred from 
measurements of electrical conductivity, magnetic susceptibility, or elastic 
moduli (for gels). 3 

Are there, then, any microscopic fractals that can be measured, and 
assessed, with equal conceptual simplicity 4 as the mentioned macroscopic 
cases? The surfaces to be discussed in this paper are of this type. Other than 
that, the list (ordered by ascending inner cutoff, i.e., length scale below which 
the fractal behavior subsides) is short as yet: Analysis of atomic positions 
has shown various proteins to have fractal backbones in the crystalline 
s ta te .  (24) By determination of fractal dimension from electron micrographs, 
discontinuous thin metal films ~2s) and aggregates of fume silica (this follows 
from data presented in Ref. 26) and of gold colloids t27) have been identified 
as percolation clusters and diffusion-limited aggregates, respectively. Finally, 

3 Note also that some of these quantities are monitored jointly by fractal and spectral 
(fracton) dimension, and so may not yield separate information about the two. See 
contributions of these proceedings. 

4 For example, from length-yardstick or mass-radius relations (Ref. 8). 
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at the margin of the molecular domain (i.e., at inner cutoffs of about 10 3 A) 
and beyond, fractal dimension of particle contours, e.g., of crystal 
agglomerates, has been measured from micrographs. ~28) Note that all items 
except the last correspond to fractal curves (some highly branched) rather 
than to surfaces. 

Thus, the class of surfaces in question fills some gaps as follows: 

(i) Inner cutoffs are really at atomic distances, typically at a few 
angstroms. 

(ii) Fractal surface dimension and fractal curve dimension may 
coincide (if the curve is sufficiently space filling), but the topological 
differences between the two substrate classes promise interesting variations in 
the physics on them. t16'29) [Note that some of our examples carry an 
extensive system of through-pores (channels, holes) similar to a Menger-type 
sponge ~8~ with finite inner cutoff, in which case the fractal idealization will 
after all amount to a spatial, infinitely ramified curve.] Such physics is 
promoted by the corollary of direct observability, that the fractal can be 
nondestructively "seen" by external probes like photons, molecules, etc. 

(iii) The surface topography at molecular scales of solids is decisive in 
adsorption phenomena (e.g., ordered phases of adlayers), corrosion, elec- 
trochemistry in general, catalysis, and microelectronics, to name a few. Prior 
to fractals, there has been little guidance to an effective characterization of 
the issue of roughness in any of these fields. ~6) 

(iv) While some metal surfaces do resemble downscaled terrestrial 
landscapes (for a review see Ref. 30) and may perhaps be modeled as frac- 
tional Brownian reliefs, ~8) many of our case studies beg for porous random 
fractals as models. 

2. THE BASIC POWER LAWS 

Unless particularly prepared (e.g., sputtered and annealed metal 
crystals, exfoliated graphite, some fume silicas), solids tend to have a 
microscopic surface structure that cannot be reasonably described in terms 
of height above some standard reference manifold (plane, sphere,...). This 
type of situation, originating from absence of globally directive forces (like 
gravity in geomorphology), is referred to as porosity. It has two important 
consequences: First, since much of the surface is hidden with respect to any 
straight-line path in a beam of incoming projectiles, only X-rays and 
neutrons (for which most substrates are practically transparent), or diffusing 
molecules can effectively probe all of the relevant surface. This delineates 
some of the experimental techniques at our disposal. Second, even if an atlas 
of maps of the surface were available, Fourier methods are not applicable for 

822/36/5-6-13 
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the analysis (but see also Ref. 6). This prepares us for looking for other data 
than variances of increments. ~9) 

These remarks suggest the following quite general procedure to study 
surface irregularity in the molecular domain: Adsorb a monolayer of iden- 
tical molecules, each of effective cross-section area or, on the surface and 
count their number. Usually this number is expressed as number of moles, n, 
per gram of adsorbent (see also below). If  then we go from large to small 
molecules (yardsticks) for adsorption, surface features comparable in size 
manifest themselves by a growth of n faster than const �9 a-1 .  Specifically, if 
the cross sections of the different molecules are geometrically similar and 

n oc a -~/2 (1) 

holds with D > 2 (for ami n ~< cr ~< O'max) , the surface has the fractal dimension 
D (over the yardstick range [O'min, O'max] ). Before we proceed to examples for 
(1), several remarks are in order: 

(a) For spherical molecules, with radii r, Eq. (1) reduces to n oc r -D. 
This is the definition of fractal dimension. ~8) (Indeed, it is equivalent to that 
const �9 r -D balls of radius r, r ~ 0, are required to envelop the object, here 
the surface, by inclusion. Since the surface can fill no more than a volume, 
one has 2 <~ D < 3 altogether.) 

(b) Being the surface analog of the coastline-of-Britain analysis, ~8) 
Eq. (1) asserts microscopic surface fractality as directly as any of those 
studies. It does so without the restriction to isotropic surfaces inherent in 
other approaches. (928)'s 

(c) Standard methods exist to measure n and a. The mole numbers n 
result from adsorption isotherms, t3~) In the simplest case (Langmuir 
isotherm), the amount adsorbed approaches a constant value with increasing 
equilibrium pressure or concentration of the species to be adsorbed, and n is 
this value. The area tr occupied by a single molecule obtains from molecular 
models, monolayers on flat surfaces, liquid molar volume v of the compound 
to be adsorbed, or radii of gyration (when yardsticks are polymers), t3'4) For 
instance, for suitable adsorbate series one has cr oc v 2/3, which turns (1) into 
a relation between macroscopic quantities alone, n ~ v - m s  (Note: 
Customarily, measured values for n and cr are converted into specific surface 
area, Avogadro's number • mr. To avoid the problem that this may be a 
poor invariant, it has become standard to use nitrogen as reference yardstick. 
In as far as nitrogen is among the smallest available yardsticks, according 
surface areas like 10 3 mE/g for silica gel or activated carbon may then be 
read as the practitioner's version of infinite surface area of a corresponding 
fractal model.) 

s For Fourier-analytic options see Ref. 6. 
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(d) In all examples to date, both for (1) and Eqs. (2)-(3) below, Omi n 
and em, X reflect limited available data, not any observed departure 
(crossover) from the power law in question. That is, our yardstick ranges 
only imply that 

inner cutoff < (O'min) 1/z 

outer cutoff > (Oma• 1/2 

the actual cutoffs for fractal behavior remaining unexplored. In particular, 
ami n and area x comfortably satisfy the condition of "minimal self-similarity" 
(or exclusion of nonrecurrent irregularities), amax/ami n ~> 2. ~6) 

(e) The condition that the yardstick molecules be similar to one 
another cannot be relaxed very much (only for a smooth surface, D = 2, is it 
redundant). Indeed, if the molecules are rods of variable length and constant 
width, parallel aligned on an isotropic surface, Eq. (1) has to be replaced 
by(3) 

n oc a-n+1 (2) 

Such variations of functional dependence can be used to discriminate 
between competing adsorbate geometries, in special cases even without prior 
knowledge of D. (3'4) 

Examples for surfaces with well-defined dimension greater than 2, deter- 
mined from Eq. (1) or variants thereof, borrow from quite varied materials 
(D and the yardstick range, in /~2, are given in parentheses): Graphite 
(2.07 + 0.01, 16-178)(4); carbon black (2.25 :L 0.09, 16-71)(4); activated 
carbon (2.30 i 0.07, 16--47)(4); porous alumina (2.79 + 0.03, 
16-451000)(~); porous silica gel (2.94:1:0.04, 16-34). (1) This is just a 
selection from Refs. 4 and 5 [there and in Refs. 1, 6, 7, it is literature data 
that has been analyzed in terms of Eqs. (1)-(3)]. For instance, the activated 
carbon is a member of a series in which activation-controlled smoothening of 
micropores is observed as progression of D values all the way from 3 to 2; 
and alumina is one out of three cases where polymers serve as yardsticks. 

Here, however, we wish to present results of experiments (32) designed to 
show (for the first time) that fractal behavior determined from Eq. (1) is 
perfectly recovered by other methods, here Eq. (3). So the natural place to 
discuss this most recent example for (1), is following the results (3)-(5) 
which we now introduce. 

Apart from polymer adsorption, n vs. e measurements for molecules 
much larger than, say, C10 species, are exceptional (also in difficulty). This 
is the background of some narrow yardstick ranges in above examples for 
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(1), and is where another relation steps in--one that allows considerably 
larger yardstick ranges to be scanned effectively. It is geared to particulate 
adsorbents and states that, for a f ixed reference adsorbate (usually nitrogen) 
and geometrically similar adsorbent particles of variable diameter 2R, the 
monolayer mole number n varies according to 

n oc R D-3 (3) 

the amount of adsorbent being held constant by volume (>)'R3). The 
according experimental procedure is quite similar to that for (1), except that 
we now vary particle (substrate) rather than yardstick size. In fact, Eqs. (1) 
and (3) can be derived from each other (3) by noting that upscaling of the 
yardstick from O'mi n t o  0", on a surface of diameter 2Rma x [Eq. (1)], is 
equivalent to downscaling of the surface from 2Rma x to 2R = 
2Rmax(qmin/tT) 1/2, under the yardstick of area O'mi n [Eq. (3)]; and that the 
factor R-3  in (3) accounts for the number of such particles contained in a 
macroscopic volume. Of course, the power law (3) is simply a variant of the 
area-volume relation (8) for a fractal surface, but the preceding argument has 
the virtue of yielding also the important interconversion of yardstick and 
particle ranges. It is contained in the following equivalence(3): 

(1) holds for tYmin ~ cr ~ amax t t ( 3 )ho lds fo rRmin~R~Rmax  
and particle diameter 2Rma x t r ( and yardstick area O'mi n (4) 

where 

Rmax (Omaxt J2 
x O'min / 

The asymmetry in (4), i.e., that ami n and Rma x are preferred over, e.g., Crma x 
and Rmi . ,  is dictated if the particles are only required to be similar to each 
other within the resolution given by the reference yardstick for (3). In 
practice such approximate similarity is often granted by a common origin of 
the particles, (3)'6 and may even be dispensed with on the grounds that it is 
highly unlikely that a sequence of completely unrelated particle shapes 
should satisfy Eq. (3) ("maximum-likelihood estimation")fl Finally, note that 
possible particle agglomeration cannot alter Eq. (3) in any significant way. (6) 

Examples for D values and yardstick ranges determined from Eqs. 
(3)-(5), are even more numerous than those f rom (1). (4.7) Many of them are 
crystalline: quartz (2.15 + 0.06, 16-10600)(5'7); calcite (2.16 + 0.04, 

6 It also conforms with the "principle of least-biased guess" (Jaynes). 
7 By the same token, one may also weaken yardstick similarity for Eq. (1). 
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20-47000)(5'7); a-Fe00H (2.57 + 0.04, 16-980)(s'7); dolomites of different 
origins (2.58 :t: 0.01, 2.91 + 0.02, 20--47000)(5'7); kaolinite (2.92 + 0.01, 
150-16 500). (5-7~ 

Thus, as a rule from (1) and (3), one has that observed D values fall 
anywhere between 2 and 3; that standard deviations are around 0.05 and 
compare very well with those from simulation (33~ on models with well- 
defined D by construction; and that O'maJO'mi n ratios within easy reach are 
~<10 for Eq. (1) (recall alumina, however), and ~103 for Eq. (3). 

3. POROUS SILICA GEL, REVISITED 

The announced experimental confirmation that the power laws ( l )  and 
(3) yield the same value for fractal dimension was carried out on porous 
silica gel (Woelm). So the surface is a close relative (but of a different 
producer) of the adsorbent analyzed in Ref. 1, and we can draw on some 
facts from there: (i) The result D = 2.94 (see preceding section) suggests that 
we should find a dimension as strikingly off the classical value of two. 
(ii) Suitable adsorbates are aliphatic alcohols. They attach to the surface by 
hydrogen bonding of the alcoholic OH group to a surface OH group, and 
thus form monolayers well identifiable from Langmuir isotherms. (iii) Cross 
sections a can be monitored by varying the alkyl group of the alcohols. 

In the experiments here, alcohols were adsorbed from toluene solution. 
As expected for such nonpolar solvent, all monolayer values n could be read 
off from perfect (straight-line) Langmuir plots. (31) Underlying the n vs. a 
analysis [Eq. (1)] were identical substrate samples, each with particle 
diameters in the range 63-200 #m (with the same distribution of course). The 
yardsticks were methanol, ethanol, isopropanol, tertiary butanol, and tertiary 
amyl alcohol, i.e., a series of spherical alcohols. This choice not only meets 
the condition of geometrically similar yardsticks in the simplest possible 
way, but also furnishes unambiguous a values from liquid density of the 
respective alcohols. 8 The results, n and a, are shown in Fig. 1. They obey the 
anticipated scaling, Eq. (1), with D = 3 . 0 2  + 0.06 and yardstick range 
18-35 •2. 

On the other hand, the substrate samples for the n vs. R analysis 
[Eq. (3)], each homogeneous with respect to particle size, were prepared by 
sieving of the source material. The reference yardstick chosen was tertiary 
amyl alcohol, the largest of the yardsticks used in the n vs. a analysis. The 
resulting n and R values (Fig. 2) satisfy Eq. (3) with D ---- 3.04 • 0.05, the 
screened range of particle diameters being 71-192pm. By (4) and (5), this 
implies (1), with D = 3.04 + 0.05, over the yardstick range of 35-256/~z. 

8 The model assumptions underlying this standard conversion of molar volume into molecular 
cross sections are recalled in Ref. 3. 
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Thus the two modes of analysis, complementary as they are, yield the same 
result (within standard deviations, one is the analytic continuation of the 
other). This is an important benchmark for the valuation of the two methods, 
and hence of previous surface dimensions. 

There are several ways of appreciating the extreme situation that a 
surface, here of silica gel, has dimension virtually 3: 

(a) The surface is so crumpled and porous that there is no gain in 
effective surface area when a fixed volume of adsorbent particles of given 
size is replaced by the same volume of similar, but much smaller particles. 
This is the meaning of Eq. (3) for D = 3 (for an illustration, see Ref. 7). It 
follows, e.g., that surface contributions (34) to thermodynamic properties of 
the solid are no longer negligible compared to bulk contributions. Indeed, the 
right-hand side of (3) is also the effective surface area per unit volume for a 
single particle, so that for D = 3 the ratio of the two contributions ceases to 
go to zero with increasing size of the system, R. 

(b) Equation (1) for D ~ 3 reflects that the surface is space filling to a 
degree that a monolayer amounts to a bulk phase interrupted by few small, 
and an increasing number of ever smaller, voids. (There are voids that 
correspond to pores through .which the adsorbed molecules have entered; and 
"voids" that correspond to the support of the monolayer, including pores too 
small to be accessible to the molecules under consideration.) This cascade of 
diminishing voids renders silica gel quite distinct from a zeolite, which also 
has a pore structure permeating everywhere, but one that is a periodic array 
of (intersecting) channels of uniform width. Indeed, silica gel has no 
molecular-sieve properties characteristic of zeolites. 

(c) An a priori fractal model for silica gel suggests itself as follows. 
Micrographs of spongy materials often exhibit a surprisingly smooth looking 
surface, punctured by appreciable pore entrances only here and there, the 
largest of these pore widths, 2Pmax, being considerably smaller than the 
particle diameter, 2R 0. As the resolution is increased by a factor M, smaller 
pores become visible of course, but the number of those with diameter 
~2pmaJM in the field of vision remains low. This state of affairs can be 
mimicked by a "heavy" generalized Menger sponge with b~Ro/Pmax: 
There, (8~ a unit cube is divided into b 3 cubes of length lib (generally, b is a 
fixed, odd integer />3), and in a first step 3(b--  1 )+  1 of these cubes are 
removed so that the original cube becomes punctured by three channels of 
width lib that intersect in the cube's center at right angles. In each of the 
remaining cubes of side I/b, similar channels of width lib 2 are then 
introduced; etc. There results a fractal sponge with dimension 

D = log(b 3 - 3b + 2)/log b 
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Thus, even the conservative estimate b = 7 predicts a surface dimension as 
high as D = 2.97... for silica gel. A refinement of the model might distribute 
the pore volume created at every stage among more than three channels per 
cube (cf. also the carpet constructions in Ref. 35). Such yields a fractal of 
lower lacunarity, (8'35) but the dimension remains unchanged. In particular, 
any of these models retrieves the datum that virtually all surface of silica gel 
is internal, and that most entrances from outside are invisible to any electron 
microscope. 

4. CROFTON'S  T H E O R E M  AS SCATTERING EXPERIMENT 

This section describes further, geometric consequences of molecular 
surface fractality (see Section 5 for explicitly dynamical, time-dependent 
ones). Such scaling properties other than (1)-(3) enlarge the possibilities of 
experimental analysis of fractal structures and are the source of various 
applications. The scattering experiment to be proposed is one of them and 
implements the alternative, indicated in Section 2, to surface probing by 
diffusing molecules. 

For an illustration of applications, we transplant the mass-radius 
relation (s) and the diameter-number relation (s) [general, ab initio derivations 
of (6) and (7) are given in Ref. 3]. Geared to surface problems these 
relations assert that if the surface has dimension D, the number N of 
adsorption sites (for molecules of a given kind) within distance l from any 
fixed site obeys 

N ~ l D (6) 

and the total volume V of pores of diameter >~2p obeys 

dV 
- - -  a c  p 2 - ~  ( 7 )  

do 

Equation (6) mediates between the radial density of molecules in a plane 
(D = 2) and that in a volume (D = 3), and hence is a measure of effective 
interactions (mean field, etc.) between admolecules on a D-dimensional 
surface. This of course bears on phase transitions in adlayers. (3'16'35~ Result 
(7) is the fractal answer to the problem of determining the pore-size 
distribution which governs numerous transport processes. ~ Inasfar as 
Eq. (7) is implied by any ~6~ experimental finding of (1) or (3), it is perhaps 
the first experimental pore-size distribution that is free of the ambiguity that 
the traditional experimental data (31) can be interpreted in terms of vastly 
different pore-size distributions. (37) [Note that (7) holds even for porous 
structures with D < 2, such as "light" generalized Menger sponges. (8) Note 
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also that both in (6) and (7) the proportionality factor is independent of the 
size of the surface. Rather, it is a measure of lacunarity. ~s)] 

Of particular interest are methods of experimental analysis that can 
follow the fractal behavior established by (1) or (3) to still larger scales. For 
example, in order for a surface to support an adlayer phase transition in 
2 < D < 3 dimensions, the yardstick range for (1) should be something like 
101-106 A 2 or more. Such O'ma x ~ 106/~x 2 is well in the domain of electron 
microscopy, and one may check up on D by image analysis, tzs) For excep- 
tional spheroidal or pseudoplanar surfaces, surface profiles may even be 
representable as single-valued function ("altitude") of angle or rectilinear 
coordinate, respectively, in which case well-developed instrumental methods 
of Fourier analysis can serve to measure D (for isotropic surfaces)(6): If the 
kth coefficient in the expansion of the altitude-angle function scales with k 
like k -s ,  or if the power spectrum of altitude vs. horizontal locus decays like 
co-6 for increasing frequencies co, then 

D = max{2, 3 - - a}  

and 

(8a) 

(8b) 

respectively. 
In contrast, the method we shall now set forth is neither conditioned to 

visible surface features, nor does it necessitate large-scale fractal behavior to 
be put together from different analyses [say, from (1), (3), and (8)]. It 
counts reactive collision events when particles in a suitable beam strike the 
surface. Thus, it also contrasts with elastic, all diffractive scattering at 
projectile wavelengths much larger than the inner cutoff of the fractal. ~12,3s) 

The basic ingredient is Steinhaus's version of Crofton's theorem, t39) It 
states that the length of a curve in the plane, measured with yardsticks of 
length r, can be obtained as follows: Cover the curve with an array of 
equidistant parallels (separation r) and count the number of resulting inter- 
sections, $1. Choose an integer m, rotate the grating around a fixed point in 
angular steps of n/m,  and at each orientation count the respective number of 
intersections, $2,..., Sm. Then, 

lim rrc 
m ~o~ 2--ram ( S , + . . .  + Sin) (9) 

is the length in question [specifically, (9) is a Riemann approximation of a 
double integral for the Jordan length of a rectifiable curve]. 
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Similarly, the area of a surface, measured with squares of side r, obtains 
by intersecting the surface with an analogous, but spatial array of parallel 
straight lines (separation r) and averaging the number of intersections over 
all possible orientations: Apart from an universal factor, this average equals 
the number of squares of side r required to cover the surface. The point is 
that such intersections can be physically realized and counted by looking for 
specific events that signal the traversal of an incident particle through the 
surface, the substrate itself being transparent for the particles (so that points 
of exit and reentries along the straight-line trajectory are equally detectable). 
One way of doing this is to "paint" the surface with a Gd monolayer, to 
rotate the sample in a wide neutron beam of flux I, and to count the number 
N of y quanta characteristic of the reaction 

aSVGd + n ~ 158Gd* ~ 158Gd + y 

over a fixed interval of time. (Gd is chosen for its large capture cross section, 
resulting in an effective nuclear diameter of 0.05 ,/~.) Assuming the same 
neutron velocity at different fluxes, one has a mean separation r between 
trajectories in the beam proportional to I-1/2 and, hence, that 

N oc I D/2 (10) 

for a surface of dimension D. The proviso is that the counting interval must 
be short enough that N remains a fraction of all Gd atoms on the surface 
(otherwise N would merely count the total number of Gd atoms). 

In reality neutrons do not come in regularly spaced trajectories, of 
course; nor can a single neutron light up more than one Gd atom along its 
path. So a more detailed argument asserts that regularly and randomly 
spaced parallels of the same density are equivalent (in fact, Crofton's 
original result considers the expectation value of the number of intersections 
of a random line with the curve); and that incomplete counting of all entries 
and exits along a single path is balanced by the correspondingly higher 
capture probability along the path. 

Finally, we mention that the Gd-painted surface might also be probed 
by a microbeam of neutrons (available from suitable diffraction). In that 
case, one counts N as function of beam diameter 21 (the flux is now kept 
constant) so as to observe the power law (6). 

5. CATALYTIC ACTIVITY AND OTHER FRACTAL-INTERFACE KINETICS 

Much of the eminent role of surfaces is due to their capability of 
controlling physical and chemical processes with respect to both pathways 
and rates. We focus here on interfacial processes, i.e., relating to transport to 
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and from (rather than on or along) the surface. Almost by definition then, 
the rate is proportional to the number of "active sites" on the surface. These 
sites may be the total of surface atoms (or other chemical units), energy-rich 
asperities (surface steps, dislocations, etc.), may be dictated by geometric 
accessibility (e.g., pores larger than the guest), or dynamic accessibility 
(first-passage time for migration to the surface). So one expects fractal 
surfaces to carry all kinds of dimension-dependent kinetics. This section 
explores some of it. 

The mentioned proportionality between rate and number of active sites 
can well entail a nonlinear dependence of population on time, for example, if 
the number of active sites itself depends on time. An instance is interfacial 
diffusion for small times. (4~ It is instructive to derive the result as 
application of Eq. (7): Consider diffusion of carriers of excitation (charge, 
spin polarization,...) from a fluid to a porous solid. Upon impinging on the 
surface they are to lose their activity (discharge, relaxation,...). Starting from 
a homogeneous population in the fluid at time 0, we want to estimate the 
number Q(t) of carriers deactivated up to time t. For small t and diffusion 
coefficient 9 ,  this amounts to all carriers within distance ~(~' t)  1/2 from the 
surface, (4~ i.e., those in pores of diameter ~<2(~t) 1/2 plus those in a layer of 
thickness (@t) 1/2 lining the wails of pores of diameter >2(~ t )  ~/2. Thus, Q(t) 
is the number of carriers in the volume 

~0 ~ (~'t, 1/2 - - ~ P  dp'q-(~t) J (~t'1/2 P - - - ~ p  dp (11) 

where -dV/dp is the pore-size distribution (cf. Section 4) and 2/p is the ratio 
of area to volume of an open cylinder of radius p (this pore shape is just for 
the sake of definiteness). Substitution of (7) into (1 1) yields 

3 - D  ~ t  (3-m/2 

where the proportionality factor in (7) has been expressed in terms of total 
pore volume Vto t and Pmax by Vto t = fgmax (-dV/dp) dp. Whence the desired 
result (40) 

Q( t) oct (3-0)/2 (13) 

[for (~J~t) 1/2 ~ outer cutoff]. Equation (12) shows that for D ~< 3 the fluid is 
depleted of all excitation (Vtot) almost instantaneously. Whereas for D-~ 2 
the depleted volume (12) goes to zero [one can show that the prefactor in 
(7), here written as (3 z)-3 --D)VtotPmax, vanishes faster than ( D - 2 )  3/2 for 
D ~ 2 ] ,  in accordance with the fact that (11) and (12) count only deac- 
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tivation at internal surface. If all surface is wanted instead, one uses Eq. (1) 
to replace the second integral in (11) by the total surface area measured with 
yardsticks of area ~ t  which in (12) and (13) alters just the prefactors. 

An application of (13) is that the conductance between an electrolyte 
and a solid electrode varies with the current frequency co as co(n-1)/2.(40) For 
experiments of this type, analyzed in fractal terms differently, see Ref. 41. 

The result (13) bears also on any diffusion-controlled chemical reaction 
between a liquid and a solid: If the surface remains formally unchanged 
during the reaction ("catalysis"), then (13) describes the increase of product 
concentration [ocQ(t)] with time. The same is true if the reaction consumes 
the solid but preserves its shape. [Indeed, since the prefactor in (7) is 
independent of the surface size, shrinkage of the surface affects (13) only to 
the extent that, upon restriction of the integration in (11) to p ~< Pma• there 
arises a size-dependent boundary term in (12); which, even for accor- 
dingly t-dependent Pmax, does not change (12) and (13) in leading order of t.] 
If the surface shape does change in the course of the reaction, e.g., by disap- 
pearance of successively larger pores, it does so in a manner such that, at the 
instant of consideration, fractality has subsided precisely up to length scales 
over which the liquid has been deactivated so far; i.e., the shape is preserved 
within lengths across which diffusion has yet to take place. So, again, the 
onset of the reaction obeys (13). More generally, (13) is universal because 
the surface's global property of being fractal can be undermined by diffusion- 
controlled reaction only on time scales outside the domain of (13). (Thus 
diffusion-controlled growth of fractal aggregates from nonfractal seeds (2~ 
falls outside the present discussion.) 

Reactions whose rate-determining step is not mass transport usually 
have a finite initial velocity ]unlike (13)]. When the reaction occurs 
uniformly at all accessible surface sites, this velocity is proportional to the 
surface area measured with the reactant molecule as yardstick, and its 
measurement as function of particle size R of the solid yields the surface 
dimension through Eq. (3) with n replaced by initial velocity. An example is 
provided by the dissolution of quartz in hydrofluoric acid where such 
experimental data, for crushed quartz, implies (7) D = 2 . 2 1  + 0.01 [with 
Pmax/Pmin = 495 from (5)]. Note the agreement with the D value, from 
adsorption, for quartz of a different origin (Section 2). 

For many catalytic reactions, however, the rate (usually expressed as 
activity of the catalyst, i.e., the amount of substance converted per unit mass 
of catalyst and unit time) is not governed by the whole of accessible surface 
sites. For instance, a catalyst may be fully deactivated by far less poison 
than what is required for monolayer coverage. (It remains to be explored 
whether, in some cases, such poisoning may also involve the inhibition of D- 
dimensional condensates. (3)) The time-honored idea is  (42) that the reaction 
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proceeds only at energy-rich, active sites, often modeled as edge or apex sites 
(adlineation theory). A standard model is to assume the catalyst as con- 
sisting of cubic crystallites of side R (total volume fixed and ~R 3) and that 
the activity, a, is proportional to total surface area, edge length, or number 
of corners. Then a oc R-1,  R-2 ,  or R-3 ,  respectively. But in practice, power 
laws a ocR -~ with v =  1, 2, 3, or superpositions thereof, are much less 
common than those with v < 1 (for the case of supported metal catalysts, see, 
e.g., Ref. 43). We now sketch how fractal catalyst surfaces (for which 
alumina and silica gel in Sections 2 and 3 are examples) can account for 
such v < 1 in all respects. Consider for definiteness Menger's sponge (s) of 
side R and cover it with square molecules of side r 0 ~ R. The resulting 
monolayer has a well-defined surface area, edge length, and number of 
corners (for the sponge itself this distinction fails, in accordance with the 

2 r01, and r ~ sponge's being nowhere differentiable). Respective division by r 0, 
defines the number of plane, edge, and corner sites (for resolution r0). Each 
of these numbers grows with R as R ~, and it is easy to see that this is so for 
any self-similar surface. Thus, replacing the above cubic crystallites by 
fractal ones of surface dimension D, we obtain 

a c c R  D-3  (14) 

where the active-site type enters through the prefactor. [While formally iden- 
tical with (3), Eq. (14) rests on much more liberal hypotheses, corresponding 
to submonolayers of any degree of coverage. Hence also (3) holds under 
these weaker conditions.] 

Can such fractal adlineation theory also explain empirical power laws 
a o c R  -~  with noninteger v>  1? Yes, if we recognize that many metal 
surfaces show steps and terraces that do not lend themselves to a fractal- 
surface model, but rather to a fractal-step model (distinct from fractal-slope 
models for the sea surface(12)). Indeed, if for example the crystallites are 
prisms of height R with basal profile joined from four Cantor staircases ~8) so 
that the end points of the staircases form a square of side R, then the number 
of plane, edge, and apex sites (for fixed resolution) on a single crystallite is 
proportional to R z, R 1+~ and R D', where D '  = log 2/log 3 is the dimension 
of the set of nondifferentiability of the profile. Thus, multiplying by R-3,  one 
obtains edge-controlled and apex-controlled activity with respective exponent 
1 < v < 2  and 2 < v < 3 ,  asdesired. 

6. C O N C L U S I O N  

The relation of fractal surfaces of solids to other molecular fractals has 
been discussed from the viewpoint of direct experimental observability. It has 
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been shown that ubiquitous porosity does not obstruct such observability if 
the surface is suitably probed by adsorption or selective neutron (possibly 
also short-wave X-ray) scattering. The case presented here in some detail, 
silica gel, demonstrates this to an extreme (both porositywise and with 
regard to analysis by different experimental procedures). The corresponding 
model, a heavy Menger sponge, shows that dimensions virtually 3 should not 
be a surprise. 

Viewing fractal surface geometry as statistical mechanics of surface 
irregularity (cf. also Ref. 6), one expects--and indeed finds--many 
distinguished implications of such irregularity (Sections 3-5). In fact, the 
exponents in the resulting power laws share all characteristics of critical 
exponents for phase transitions and other critical phenomena: Many of them 
describe, for D > 2, the divergence of an "ordinarily" well-defined quantity 
in some limit (e.g., surface area [cf. Eq.(1)];  the roughness factor, 
defined (31) as ratio of the surface area by nitrogen adsorption to the surface 
area by electron or optical microscopy [cf. Eq. (3)]; pore distribution 
[Eq. (7)]; deactivation per diffusion length [cf. Eq. (13)]). This is the analog 
of thermodynamic singularities for a phase transition. The analog of scaling 
laws and universality is that the exponents are not independent of each other 
but manifestly satisfy sum rules similar to those for critical exponents. Here 
universality says that the exponents depend only on the dimension of the 
surface, while the sum rules themselves are the same for all D. 

Such parallels are due, of course, to the, respectively, underlying self- 
similarity (carried by the critical fluctuations, i.e., geometrically similar 
clusters of all sizes, for phase transitions). But they also suggest that fractal 
surfaces, as described here, themselves may be frozen, critical phenomena 
(recall Section 1 and that fracture of a solid can be understood as a critical 
phenomenon, too). 

Conversely, the fractal nature of critical phenomena offers the 
possibility of realizing "fractals on fractals" (with two distinct dimensions) 
on these surfaces: Adlayer phase transitions (Section4) and on-surface 
diffusion (random walks) are examples. Others may come from supported 
metal catalysts, say with silica gel or alumina as support, if the dispersed 
metal particles alone constitute a fractal (fractal dimension by 
fragmentation ~8)) as one expects in certain cases. Work on these and other 
aspects is in progress. 
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